摘要

In this article, the magnetohydrodynamic (MHD) thermal boundary layer of a Carreau flow of Cu-water nanofluids over an exponentially permeable stretching thin plate is investigated numerically. Internal heat source/sink is also taken into account. Aft er gaining the system of leading equations, the appropriate transformations have been first employed to come across the fitting parallel conversions to alter the central governing equations into a suit of ODEs and then the renovated system of ODE along with appropriate boundary conditions is numerically solved by the shooting method with fourth-order Runge-Kutt a technique. The consequences of the relevant factors of physical parameters on velocity and temperature of merging water (H2O) and nanoparticles (Cu) have been exemplified through graphs.