摘要

The morphological versatility of the pharyngeal jaw of cichlid fishes is assumed to represent a key factor facilitating their unparalleled trophic diversification and explosive radiation. It is generally believed that the functional design of an organism relates to its ecology, and thus, specializations to different diets are typically associated with distinct morphological designs, especially manifested in the cichlids' pharyngeal jaw apparatus. Thereby, the lower pharyngeal jaw (LPJ) incorporates some of the most predictive features for distinct diet-related morphotypes. Thus, considering that piscivorous cichlids experience an ontogenetic dietary shift from typically various kinds of invertebrates to fish, concomitant morphological changes in the LPJ are expected. Using Lepidiolamprologus elongatus, a top predator in the shallow rocky habitat of Lake Tanganyika, as model, and applying geometric and traditional morphometric techniques, we demonstrate an allometric change in ontogenetic LPJ shape development coinciding with the completion of the dietary shift toward piscivory. The piscivorous LPJ morphotype is initiated in juvenile fish by increasing elongation and narrowing of the LPJ and-when the fish reach a size of 80-90 mm standard length-further refined by the elongation of the posterior muscular processes, which serve as insertion for the fourth musculus levator externus. The enlarged muscular processes of the fully mature piscivorous morphotype provide for the construction of a powerful lever system, which allows the large individuals to process large prey fish and rely on exclusive piscivory.

  • 出版日期2010-7