摘要

Dothistroma septosporum and D. pini are the causal agents of Dothistroma needle blight (DNB) of Pinus spp. in natural forests and plantations. The main aim of this study was to develop molecular diagnostic procedures to distinguish between isolates within D. septosporum, for use in biosecurity and forest health surveillance programmes. This is of particular interest for New Zealand where the population is clonal and introduction of a new isolate of the opposite mating type could have serious consequences. Areas of diversity in the dothistromin toxin gene clusters were identified in D. septosporum (51 isolates) and D. pini (6 isolates) and used as the basis of two types of diagnostic tests. PCR-restriction fragment length polymorphism (RFLP) of part of the dothistromin polyketide synthase gene (pksA) enabled distinction between two groups of D. septosporum isolates (A and B) as well as distinguishing D. septosporum and D. pini. The intergenic region between the epoA and avfA genes allowed further resolution between some of the A group isolates in RFLP assays. These regions were analysed further to develop a rapid real-time PCR method for diagnosis by high-resolution melting (HRM) curve analysis. The pksA gene enabled rapid discrimination between D. septosporum and D. pini, whilst the epoA-avfA region distinguished the New Zealand isolate from most other isolates in the collection, including some isolates from DNB epidemics in Canada and Europe. Although this study is focused on differences between the New Zealand isolate and other global isolates, this type of diagnostic system could be used more generally for high-throughput screening of D. septosporum isolates.

  • 出版日期2011-10