摘要

The stall mechanism of the NASA Rotor 37 is investigated through the analysis of the critical flow structures near the stall under the transonic condition. The performance of the rotor with Circumferential Grooves Casing Treatment (CGCT) is also studied based on the Reynolds-Averaging Navier-Stokes approach. The study finds that stall margin improvement can be achieved without significant penalty on the efficiency for the two CGCT configurations applied. The effects of circumferential grooves on the critical flow structures are studied through the analysis of the tip leakage mass and momentum transport that further reveal the CGCT mechanism.