摘要

Nitrogen-doped carbon materials derived from N-containing conducting polymer have attracted significant attention due to their special electrochemical properties in the past two decades. Novel nitrogen-enriched carbon nanofibers (NCFs) have been prepared by one-step carbonization of p-toluene sulfonic acid (P-TSA) doped polyaniline (PANI) nanofibers, which are successfully synthesized via the rapid mixing oxidative polymerization at room temperature. NCFs with diameters ranging from 100 nm to 150 nm possess a highly specific surface area of 915 m(2) g(-1) and a relatively rich nitrogen content of 7.59 at %. Electrochemical measurements demonstrate that NCFs have high specific capacitance (172 F g(-1), 2 mV s(-1)) and satisfactory cycling stability (89% capacitance retention after 5000 cycles). The outstanding properties affirm that NCFs can be promising candidates for supercapacitor electrode materials. Interestingly, the carbonization of PANI opens the possibility to tailor the morphology of resulting nitrogen-enriched carbon materials by controlling the reaction conditions of PANI synthesis.