摘要

In face of the explosive service demands, solving the problem of spectrum scarcity is becoming more important than ever. To utilize the spectrum resources more thoroughly and efficiently, virtualization technologies have been proposed, which can be a means to mitigating resource granularity and increasing efficiency in heterogeneous network environments. In this paper, a traffic-oriented resource virtualization with demand-supply dynamic analysis is proposed for optimized resource allocation of heterogeneous networks with multiple types of services. On the supply side, i.e., the network side, a low-complexity matching game approach is introduced with the novel "Match-Degree" conception, which could be defined with the Grey relational analysis. The complexity of generating preference list can be reduced by unifying various dimensions of network parameters. On the demand side, i.e., the user side, bandwidth allocation algorithm is designed to consider the comprehensive network traffic characteristics, energy consumption, and network price factors, to maximize the overall utility. Except from theoretic analysis, simulation has also been employed to compare the proposed scheme with prior and traditional ones. To further verify the practicability, tractability, and effectiveness of the proposed demand-supply scheme, a test bed is designed and developed in this paper.