摘要

People with cochlear hearing loss have substantial difficulty understanding speech in real-world listening environments (e.g., restaurants), even with amplification from a modern digital hearing aid. Unfortunately, a disconnect remains between human perceptual studies implicating diminished sensitivity to fast acoustic temporal fine structure (TFS) and animal studies showing minimal changes in neural coding of TFS or slower envelope (ENV) structure. Here, we used general system-identification (Wiener kernel) analyses of chinchilla auditory nerve fiber responses to Gaussian noise to reveal pronounced distortions in tonotopic coding of TFS and ENV following permanent, noise-induced hearing loss. In basal fibers with characteristic frequencies (CFs) >1.5 kHz, hearing loss introduced robust nontonotopic coding (i.e., at the wrong cochlear place) of low-frequency TFS, while ENV responses typically remained at CF. As a consequence, the highest dominant frequency of TFS coding in response to Gaussian noise was 2.4 kHz in noise-overexposed fibers compared with 4.5 kHz in control fibers. Coding of ENV also became nontonotopic in more pronounced cases of cochlear damage. In apical fibers, more classical hearing-loss effects were observed, i.e., broadened tuning without a significant shift in best frequency. Because these distortions and dissociations of TFS/ENV disrupt tonotopicity, a fundamental principle of auditory processing necessary for robust signal coding in background noise, these results have important implications for understanding communication difficulties faced by people with hearing loss. Further, hearing aids may benefit from distinct amplification strategies for apical and basal cochlear regions to address fundamentally different coding deficits.

  • 出版日期2016-2-17