摘要

Herein, a novel CdS nanocomposite is fabricated by a facile one-pot hydrothermal method assisted by glucose and polyvinylpyrrolidone (PVP). The as-prepared CdS is coated with a thin layer, which is determined to be hydrothermal carbonation carbon (HTCC) mainly containing semiconductive polyfuran. The as-prepared HTCC-coated CdS shows superior photocatalytic activity for the degradation of Rhodamine B (RhB) under visible light irradiation (lambda >= 420 nm). The optimum sample (glucose content of 0.1 g) shows a degradation rate four-times that of pure CdS reference. Moreover, it also shows an improved stability, and the activity can be maintained at 96.2% after three cycles of recycling. The enhanced photocatalytic activity and stability of nanocomposite can mainly be attributed to: (i) The addition of PVP in the reaction solution can significantly increase the specific surface area of CdS and thus offer more active sites. (ii) The HTCC in the nanocomposite can expand the range of light absorption. (iii) The HTCC layer can form a heterojunction with CdS and improve the charge separation and transfer.