摘要

Soil improvement is one of the major concerns in civil engineering. Therefore, a variety of approaches have been employed for different soil types. The loose granular soils and sediments have always imposed challenges due to their low strength and bearing capacity as well as presenting difficulties in drilling and excavation. Biomediated soil improvement, i.e., utilizing some bacteria to precipitate calcite on soil particles, has recently been introduced as a novel link of biotechnology and civil engineering to improve the problematic soils. Biogrout as a branch of biomediated soil improvement is based upon microbial calcium carbonate precipitation (MICP). In the present study, the Taguchi method with the aim of optimizing the process was utilized to design the experiments (DOE). A standard L9 orthogonal array with four parameters comprising bacterial cell concentration, molar concentration ratio of nutrient solution, curing time, and flow rate, each assigned to three levels, was selected. In this regard, soil samples were stabilized in sandy soil columns. Two-phase injections were conducted by injecting the bacterium Sporosarcina pasteurii PTCC 1642 in the first phase and nutrient in the second phase. Specimens were subjected to an unconfined compressive strength (UCS) test. ANOVA pointed out how effectual each parameter was. The most effective parameter was curing time, which accounted for 45.97% of the overall variance of the experimental data followed by bacterial cell concentration (22.01%), nutrient strength (19.98%), and flow rate (12.04%). Predicted UCS values for the optimum condition were validated in a confirmation test. Indeed, the UCS of the soil increased from 85 kPa in the control sample to 930 kPa for the optimally treated specimen. It was concluded that rather than curing time, the other parameters are almost equally influential in the applied injection procedure.

  • 出版日期2016