A preliminary study of functional coating material of polypropylene itaconate incorporated with [Cu-3(BTC)(2)] MOF as CO2 adsorbent

作者:Wibowo Atmanto Heru; Lestari Witri Wahyu; Teteki Fitriana Jati; Krisnandi Yuni Krisyuningsih; Suratman Adhitasari
来源:Progress in Organic Coatings, 2016, 101: 537-542.
DOI:10.1016/j.porgcoat.2016.09.025

摘要

The introduction of CO2 adsorbent of [Cu-3(BTC)(2)] into coating material of polypropylene itaconate (PPIA) eventually opens up further investigation of the functional coating related to the air or gas adjustment. This paper presents the fabrication of functional coating materials based on PPIA modified with [Cu-3(BTC)(2)]. Thermal stability, surface morphology, and the CO2-absorption ability of the obtained materials are investigated. The color of the coating film turned from the yellowish viscous liquid into blue opaque surface after incorporation of [Cu-3(BTC)(2)]. For the best application of the coating material of PPIA, incorporation of [Cu-3(BTC)(2)] into PPIA should not more than 20% (w/w), as the coating turned from a smooth surface to a coarser surface and a rigid form. The thermal stability of the PPIA coating decreased as the [Cu-3(BTC)(2)] content in the PPIA increased. The content of 1-5% [Cu-3(BTC)(2)] affected the significant CO2 adsorption on the coating, in which no significant CO2 response of the PPIA was seen with the absence of MOF on the coating materials. Above 10%, the CO2 adsorption of the coating was more than 50% of the adsorption value of [Cu-3(BTC)(2)] MOF only. With the incorporation of 20%, the CO2 absorption reached about 84% of the absorption value of [Cu-3(BTC)(2)] MOF. This study proved that the PPIA coating incorporating [Cu-3(BTC)(2)] MOF could afford a coating material with a function to adsorb CO2 gas.

  • 出版日期2016-12