摘要

Combination cancer therapy has attracted considerable attention due to its enhanced antitumor efficacy and reduced toxicity granted by synergistic effects over monotherapy. The application of nanotechnology is expected to achieve coencapsulation of multiple anticancer agents with enhanced therapeutic efficacy. Herein, a unique nanomicelle based on amphiphilic dendrimer (AmD) consisting of a hydrophilic polyamidoamine dendritic shell and a hydrophobic polylactide core is developed for effectively loading and shuttling 5-fluorouracil (5-Fu) and doxorubicin (Dox). The yielded drug-encapsulated dendritic nanomicelle (5-Fu/Dox-DNM) has a modest average size of 68.6 +/- 3.3nm and shows pH-sensitive drug release manner. The parallel activity of 5-Fu and Dox show synergistic anticancer efficacy. The IC50 value of 5-Fu/Dox-DNM toward human breast cancer (MDA-MB-231) cells was 0.25g/mL, presenting an 11.2-fold and 6.1-fold increase in cytotoxicity compared to Dox-DNM and 5-Fu-DNM, respectively. Furthermore, 5-Fu/Dox-DNM significantly inhibits the progression of tumor growth in the MDA-MB-231 xenograft tumor mice model. In conclusion, we have demonstrated that our AmD-based combination therapeutic system has promising potential to open an avenue for coencapsulation of multiple chemotherapeutic agents to promote superior anticancer effect.

  • 出版日期2017