摘要

Flow behavior of particles in a circulating fluidized bed (CFB) riser is numerically simulated using a two-fluid model incorporating with the kinetic theory for particle rotation and friction stress models. The particle rotations resulting from slightly friction particle-particle collisions was considered by introducing an effective coefficient of restitution based on the kinetic theory for granular flow derived by Jenkins and Zhang [2002. Kinetic theory for identical, frictional, nearly elastic spheres. Physics of Fluids 14, 1228-1235]. The normal friction stress model proposed by Johnson et al. [1990. Frictional-collisional equations of motion for particles flows and their application to chutes. journal of Fluid Mechanics 210, 501-535] and a modified frictional shear viscosity model proposed by Syamlal et al. [1993. MFIX Documentation and Theory Guide, DOE/METC94/1004, NTIS/DE94000087] were used as the particle frictional stress model. The drag force between gas and particle phases was modified with cluster-based approach (CBA). The flow behavior of particles and the cluster size in a riser of Wei et al. [1998. Profiles of particle velocity and solids fraction in a high-density riser. Powder Technology 100, 183-189] and Issangya et al. [2000. Further measurements of flow dynamics in a high-density circulating fluidized bed riser. Powder Technology 111, 104-113] experiments are predicted. Effects of the rotation and friction stress models on the computed results are analyzed. It is concluded that particle rotations reduce the cluster size and alter the particle flows and distributions through more particle fluctuation energy dissipations. Effects of frictional stress on flow behavior and cluster size are not significant because the particle phase in the CFB riser is not dense enough to take into account for the particle-particle contact interactions.