Novel multi-targeting anthra[2,3-b]thiophene-5,10-diones with guanidine-containing side chains: Interaction with telomeric G-quadruplex, inhibition of telomerase and topoisomerase I and cytotoxic properties

作者:Ilyinsky Nikolay S*; Shchyolkina Anna K; Borisova Olga F; Mamaeva Olga K; Zvereva Maria I; Azhibek Dulat M; Livshits Mikhail A; Mitkevich Vladimir A; Balzarini Jan; Sinkevich Yuri B; Luzikov Yuri N; Dezhenkova Lybov G; Kolotova Ekaterina S; Shtil Alexander A; Shchekotikhin Andrey E; Kaluzhny Dmitry N
来源:European Journal of Medicinal Chemistry, 2014, 85: 605-614.
DOI:10.1016/j.ejmech.2014.08.030

摘要

Novel generations of antitumor anthraquinones are expected to be advantageous over the conventional chemotherapeutic agents. Previous structure activity relationship studies demonstrated an importance of the positively charged side chains conjugated to anthra[2,3-b]thiophene-5,10-dione scaffolds. Exploring a role of individual side chain moieties in binding to the duplex and G-quadruplex DNA, modulation of telomerase and topoisomerase I activities, intracellular accumulation and cytostatic potency, we herein analyzed a series of reported and newly synthesized guanidine-containing derivatives of anthra[2,3-b]thiophene-5,10-dione. We found that the number of cationic side chains (namely, two) is critical for a tight interaction with human telomeric G-quadruplex (TelQ). Along with a larger drug-TelQ association constant, the telomerase attenuation by anthrathiophenediones with two basic groups in the side chains was more pronounced than by the analogs bearing one basic group. For mono-guanidinated compounds the substituent with the amino group in the side chain provided better TelQ affinity than the methylamine residue. The intracellular uptake of the mono-guanidino derivative with two side chains was >2-fold higher than the respective value for the bis(guanidino) derivative. This difference can explain a lower antiproliferative potency of bis(guanidine) containing compounds. Thus, the modifications of side chains of anthra[2,3-b]thiophene-5,10-dione differently modulated drug-target interactions and cellular effects. Nevertheless, the selected compound 11-(3-aminopropylamino)-4-(2-guanidinoethylamino)anthra[2,3-b]thiophene-5,10-dione 13 demonstrated a high affinity to TelQ and the ability to stabilize the quadruplex structure. These properties were paralleled by reasonable potency of 13 as a telomerase/topoisomerase I inhibitor and an antiproliferative agent. These results indicate that the structural elements of anthra[2,3-b]thiophene-5,10-dione derivatives can be balanced to yield a candidate for further preclinical study.