AID-Initiated DNA Lesions Are Differentially Processed in Distinct B Cell Populations

作者:Chen Zhangguo; Ranganath Sheila; Viboolsittiseri Sawanee S; Eder Maxwell D; Chen Xiaomi; Elos Mihret T; Yuan Shunzhong; Hansen Erica; Wang Jing H*
来源:The Journal of Immunology, 2014, 193(11): 5545-5556.
DOI:10.4049/jimmunol.1401549

摘要

Activation-induced deaminase (AID) initiates U:G mismatches, causing point mutations or DNA double-stranded breaks at Ig loci. How AID-initiated lesions are prevented from inducing genome-wide damage remains elusive. A differential DNA repair mechanism might protect certain non-Ig loci such as c-myc from AID attack. However, determinants regulating such protective mechanisms are largely unknown. To test whether target DNA sequences modulate protective mechanisms via altering the processing manner of AID-initiated lesions, we established a knock-in model by inserting an S gamma 2b region, a bona fide AID target, into the first intron of c-myc. Unexpectedly, we found that the inserted S region did not mutate or enhance c-myc genomic instability, due to error-free repair of AID-initiated lesions, in Ag-stimulated germinal center B cells. In contrast, in vitro cytokine-activated B cells display a much higher level of c-myc genomic instability in an AID- and S region-dependent manner. Furthermore, we observe a comparable frequency of AID deamination events between the c-myc intronic sequence and inserted S region in different B cell populations, demonstrating a similar frequency of AID targeting. Thus, our study reveals a clear difference between germinal center and cytokine-activated B cells in their ability to develop genomic instability, attributable to a differential processing of AID-initiated lesions in distinct B cell populations. We propose that locus-specific regulatory mechanisms (e.g., transcription) appear to not only override the effects of S region sequence on AID targeting frequency but also influence the repair manner of AID-initiated lesions.

  • 出版日期2014-12-1