摘要

The Rauoafell composite complex is part of the Neogene Breiodalur volcano, eastern Iceland and is composed of a composite feeder dyke, a vent structure and a composite flow. The two end-members of the composite complex are rhyolite and basalt, and both are rich in plagioclase macrocrysts: bytownite in basalt and oligoclase in rhyolite. The rhyolite also includes ferroaugite macrocrysts. The mixed rocks are separated in three textural groups related to mixing proportions. When the basaltic end-member is dominant, a hybrid texture with a homogeneous matrix is observed and the only evidence of mixing is the presence of antecrysts of both end-members. When the basaltic end-member represents c. 65 to 30 % of the mixture, we observe emulsion textures composed of finely comingled basalt and rhyolite. The difference between these two textural expressions of mixing is due to effects of diffusion. The third texture shows mafic enclaves suspended in a rhyolitic matrix. In these rocks, the proportion of the basaltic end-member is inferior to 30 %, implying that the basalt froze solid in contact with the rhyolite. Zoning of plagioclase shows that the mixing processes are driven initially by highly efficient micro-mingling; the emulsification is possibly a result of compositional gradient stresses (Korteweg stress) between miscible basalt and rhyolite. This is followed by chemical diffusion (hybridisation) and tend to protect antecrysts from reaction with the primitive magmas. When antecrysts originated in the evolved magma, they undergo dissolution due to thermal disequilibrium during mingling and chemical disequilibrium during hybridisation. We argue that such mixing processes are important in producing intermediate rocks in Iceland and elsewhere that shows only the chemical attributes of an origin by mixing. The preservation of emulsion textures is rare and highly dependent on cooling history.

  • 出版日期2013-6

全文