摘要

This paper presents a new implementation of a constitutive model commonly used to represent plastic bonded explosives in finite element simulations of thermomechanical response. The constitutive model, viscoSCRAM, combines linear viscoelasticity with isotropic damage evolution. The original implementation was focused on short duration transient events; thus, an explicit update scheme was used. For longer duration simulations that employ significantly larger time step sizes, the explicit update scheme is inadequate. This work presents a new semi-implicit update scheme suitable for simulations using relatively large time steps. The algorithm solves a nonlinear system of equations to ensure that the stress, damaged state, and internal stresses are in agreement with implicit update equations at the end of each increment. The crack growth is advanced in time using a sub-incremental explicit scheme; thus, the entire implementation is semi-implicit. The theory is briefly discussed along with previous explicit integration schemes. The new integration algorithm and its implementation into the finite element code, Abaqus, are detailed. Finally, the new and old algorithms are compared via simulations of uniaxial compression and beam bending. The semi-implicit scheme has been demonstrated to provide higher accuracy for a given allocated computational time for the quasistatic cases considered here. Published 2014. This article is a US Government work and is in the public domain in the USA.

  • 出版日期2014-7-6
  • 单位Los Alamos