摘要

This paper proposes a two-stage distributionally robust optimization model for the joint energy and reserve dispatch (D-RERD for short) of bulk power systems with significant renewable energy penetration. Distinguished from the prevalent uncertainty set-based and worst-case scenario oriented robust optimization methodology, we assume that the output of volatile renewable generation follows some ambiguous distribution with known expectations and variances, the probability distribution pdf) is restricted in a functional uncertainty set. D-RERD aims at minimizing the total expected production cost in the worst renewable power distribution. In this way, D-RERD inherits the advantages from both stochastic optimization and robust optimization: statistical characteristic is taken into account in a data-driven manner without requiring the exact pdf of uncertain factors. We present a convex optimization-based algorithm to solve the D-RERD, which involves solving semidefinite programming (SDP), convex quadratic programming (CQP), and linear programming (LP). The performance of the proposed approach is compared with the emerging adaptive robust optimization (ARO)-based model on the IEEE 118-bus system. Their respective features are discussed in case studies.