摘要

Design and operation options that can reduce both the initiating event frequency and the accident mitigation probability were addressed in an integrated framework to cope with station blackout. The safety, engineering cost, water delivery cost and testing/maintenance cost of each option were quantitatively evaluated to calculate the cost variation and to find an optimal point in the reference reactor, OPR1000. Design variables that represent additional emergency water supply, diverse emergency diesel generator, and surveillance test period modification were investigated. Based on these design variables, we applied the developed formula to quantify cost items, which were presented as changes of the economics and the safety. A case study was provided to illustrate the change of the total cost. Different risk aversion factors that represent different attitudes of the public were also investigated. The result shows that the costs and benefits of various complicated options can be effectively addressed with the proposed risk-informed decision making framework.

  • 出版日期2013-9

全文