摘要

In this paper, effects of variable viscosity with heat transfer on solid particle motion of dusty Jeffrey fluid model through a planar channel has been examined. The governing flow problem for fluid phase and dusty phase is formulated with the help of momentum and energy equation. The resulting coupled ordinary differential equations have been solved analytically and closed form solutions are presented. The influence of all the physical parameters are sketched for velocity profile, pressure rise and temperature profile. Numerical computation is used to evaluate the expression for pressure rise. The present analysis is also presented for Newtonian fluid by taking lambda(1) -> 0 as a special case of our study. It is found that due to the influence of variable viscosity, the fluid velocity changes in the center of the channel and shows opposite behavior near the walls. It is also found that temperature profile increases for larger values of Prandtl number (Pr) and Eckert number (Ec).