A deep cascade of neural networks for image inpainting, deblurring and denoising

作者:Zhao, Guoping*; Liu, Jiajun; Jiang, Jiacheng; Wang, Weiying
来源:Multimedia Tools and Applications, 2018, 77(22): 29589-29604.
DOI:10.1007/s11042-017-5320-7

摘要

In recent years, we have witnessed the great success of deep learning on various problems both in low and high-level computer visions. The low-level vision problems, including inpainting, deblurring, denoising, super-resolution, and so on, are highly anticipated to occur in machine vision and image processing. Many deep learning based methods have been proposed to solve low-level vision problems. Most researches treat these problems independently; however, most of the time they appear concurrently. Motivated by the success of generative model in the field of image generation, we develop a deep cascade of neural networks to solve the inpainting, deblurring, denoising problems at the same time. Our model contains two networks: inpainting GAN and deblurring-denoising network. Inpainting GAN generates the coarse patches to fill the lost part in damaged image, and the deblurring-denoising network, stacked by a convolutional auto-encoder, will further refine them. Unlike other methods that handle each problem separately, our method jointly optimizes the two sub-networks. Because GAN training is not only unstable but also difficult, we adopt the Wasserstein distance as the loss function of the inpainting GAN and propose a gradual training strategy. Learning from the idea of residual learning, we utilize skip connections to pass image details from input to reconstruction layer. Experimental results have demonstrated that the proposed model can achieve state-of-the-art performance. Through the experiments, we also demonstrated the effectiveness of the cascade architecture.