摘要

Background: To date, there has been no adequate biomechanical model that would allow a quantitative comparison in terms of stability/stiffness between a corpectomy with the posterior column preserved and a total spondylectomy with the posterior column sacrificed. The objective of this study was to perform a biomechanical comparison of 360 degrees stabilizations for corpectomy and total spondylectomy, using the human thoracolumbar spine. Methods: Five human cadaveric thoracolumbar spines (T8-L2) were tested according to the following loading protocol: axial compression, flexion, extension, lateral bending to the right and left, and axial rotation to the right and left. This loading protocol was applied three times. Each specimen was tested intact, after corpectomy, and after total spondylectomy. The relative stiffness of each motion segment was determined for each test. Results: There was no significant difference in stiffness after reconstruction of total spondylectomy versus corpectomy in our thoracolumbar model. Our construct consisted of an anterior cage and four-level pedicle screw instrumentation (two above and two below) and provided similar stiffness in both models. Despite the additional bone resection in a total spondylectomy versus corpectomy, the constructs did not differ biomechanically. Additionally, there was no significant difference in stiffness between the intact specimen and either reconstruction model. Conclusions: A classic corpectomy, which leaves the posterior column intact, is no better in terms of stability/stiffness than a total spondylectomy carried out using a shorter cage, followed by compression using posterior instrumentation.

  • 出版日期2015-7-1