摘要

Thermodynamic calculations predict mineralogy from temperature and pressure and vice versa. Such calculations assume that stress is isotropic despite the fact that differential stresses prevail in Earth, resulting from large-scale tectonics and/or differences between fluid and rock pressures in porous rocks. New calculations show that differential stress can have significant effects on thresholds for metamorphic reactions, depending on the grain-scale reaction pathways. A differential stress may, depending on the reaction pathway, have an effect equivalent to a pressure difference on the order of (assemblage volume)/(reaction volume change) x (differential stress). The multiplying factor is typically 10 or more. For example, the onset of a garnet + clinopyroxene breakdown reaction may be offset, up or down, by the equivalent of 500 MPa in pressure for a 50 MPa differential stress. The effect is equivalent to a temperature difference on the order of (assemblage volume)/(reaction entropy change) x (differential stress). For example, the onset of muscovite + quartz breakdown may be offset, up or down, by the equivalent of 130 degrees C for a 50 MPa differential stress. Much of Earth is under differential stress, so the new calculations invite a reappraisal of metamorphic mineralogy and microstructure, indicating that new insights into stresses and fluid pressures on Earth can be gained.

  • 出版日期2014-8