摘要

Although the probability of occurrence of station internal ac grounding faults in modular multilevel converter (MMC)-based high-voltage direct-current systems is low, they may lead to severe consequences that should be considered when designing protection systems. This paper analyzes the characteristics of valve-side single-phase-to-ground (SPG) faults in three configurations of MMC systems. Fault responses for symmetrical monopole MMCs are first studied. Upper arm overvoltages and ac-side nonzero-crossing currents arising from SPG faults in asymmetrical and bipolar configurations are then investigated. DC grounding using an LR parallel circuit is employed to create current zero-crossings, which will enable the operation of grid-side ac circuit breakers. The theoretical analysis is verified through simulations performed in PSCAD/EMTDC, with simulation results and the theoretical analysis showing a good agreement. The studies in this paper will be valuable for the design of protection systems for station internal ac grounding faults.