摘要

Intensive research is being directed at microgrids because of their numerous benefits, such as their ability to enhance the reliability of a power system and reduce its environmental impact. Past research has focused on microgrids that have predefined boundaries. However, a recently suggested methodology enables the determination of fictitious boundaries that divide existing bulky grids into smaller microgrids, thereby facilitating the use of a smart grid paradigm in large-scale systems. These boundaries are fixed and do not change with the power system operating conditions. In this paper, we propose a new microgrid concept that incorporates flexible fictitious boundaries: "dynamic microgrids." The proposed method is based on the allocation and coordination of agents in order to achieve boundary mobility. The stochastic behavior of loads and renewable-based generators are considered, and a novel model that represents wind, solar, and load power based on historical data has been developed. The PG&E 69-bus system has been used for testing and validating the proposed concept. Compared with the fixed boundary microgrids, our results show the superior effectiveness of the dynamic microgrid concept for addressing the self-adequacy of microgrids in the presence of stochastically varying loads and generation.

  • 出版日期2016-1