Methylalpinumisoflavone Inhibits Hypoxia-inducible Factor-1 (HIF-1) Activation by Simultaneously Targeting Multiple Pathways

作者:Liu Yang; Veena Coothan K; Morgan J Brian; Mohammed Kaleem A; Jekabsons Mika B; Nagle Dale G*; Zhou Yu Dong
来源:JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284(9): 5859-5868.
DOI:10.1074/jbc.M806744200

摘要

Hypoxia is a common feature of solid tumors, and the extent of tumor hypoxia correlates with advanced disease stages and treatment resistance. The transcription factor hypoxia-inducible factor-1 (HIF-1) represents an important tumor-selective molecular target for anticancer drug discovery directed at tumor hypoxia. A natural product chemistry-based approach was employed to discover small molecule inhibitors of HIF-1. Bioassay-guided isolation of an active lipid extract of the tropical legumaceous plant Lonchocarpus glabrescens and structure elucidation afforded two new HIF-1 inhibitors: alpinumisoflavone (compound 1) and 4'-O-methylalpinumisoflavone (compound 2). In human breast tumor T47D cells, compounds 1 and 2 inhibited hypoxia-induced HIF-1 activation with IC(50) values of 5 and 0.6 mu M, respectively. At the concentrations that inhibited HIF-1 activation, compound 2 inhibited hypoxic induction of HIF-1 target genes (CDKN1A, GLUT-1, and VEGF), tumor angiogenesis in vitro, cell migration, and chemotaxis. Compound 2 inhibits HIF-1 activation by blocking the induction of nuclear HIF-1 alpha protein, the oxygen-regulated subunit that controls HIF-1 activity. Mechanistic studies indicate that, unlike rotenone and other mitochondrial inhibitors, compound 2 represents the first small molecule that inhibits HIF-1 activation by simultaneously suppressing mitochondrial respiration and disrupting protein translation in vitro. This unique mechanism distinguishes compound 2 from other small molecule HIF-1 inhibitors that are simple mitochondrial inhibitors or flavanoid-based protein kinase inhibitors.

  • 出版日期2009-2-27