摘要

The micro-fluidic inertial switch based on liquid metal utilizes the moving mercury droplet to close the switch under the action of acceleration, which is characterized by no moving parts, small contact resistance, long service life and large current. In addition to the requirement of response time, accuracy and reliability, the micro-fluidic inertial switch needs to overcome the impact of the ambient vibration. The influence of the ambient vibration on the performance of switch is investigated by loading pulse or sinusoidal interference signals in the X, Y and Z direction. The numerical results suggest that the performance of micro-fluidic inertial switch is greatly affected by impact interference signal in X sensitive direction as compared with low frequency harmonic signal. If the impact signal with high amplitude lasts only for a short time, the wrong operation might also occur. The interference signals in insensitive direction have a relatively small impact on the performance of switch, and the impact of interference signal can be reduced by reasonable structural design. Finally, anodic bonding, deep reactive ion etching (DRIE) and sputtering technique are adopted to fabricate the micro-fluidic inertial switch. The acceleration threshold of the prototype is tested. The experiment results agree with the numerical results, which indicate that the simulation method is valid.

全文