D-Tagatose inhibits the growth and biofilm formation of Streptococcus mutans

作者:Hasibul Khaleque; Nakayama-Imaohji Haruyuki; Hashimoto Masahito; Yamasaki Hisashi; Ogawa Takaaki; Waki Junpei; Tada Ayano; Yoneda Saori; Tokuda Masaaki; Miyake Minoru; Kuwahara Tomomi*
来源:Molecular Medicine Reports, 2018, 17(1): 843-851.
DOI:10.3892/mmr.2017.8017

摘要

Dental caries is an important global health concern and Streptococcus mutans has been established as a major cariogenic bacterial species. Reports indicate that a rare sugar, D-tagatose, is not easily catabolized by pathogenic bacteria. In the present study, the inhibitory effects of D-tagatose on the growth and biofilm formation of S. mutans GS-5 were examined. Monitoring S. mutans growth over a 24 h period revealed that D-tagatose prolonged the lag phase without interfering with the final cell yield. This growth retardation was also observed in the presence of 1% sucrose, although it was abolished by the addition of D-fructose. S. mutans biofilm formation was significantly inhibited by growth in sucrose media supplemented with 1 and 4% D-tagatose compared with that in a culture containing sucrose alone, while S. mutans formed granular biofilms in the presence of this rare sugar. The inhibitory effect of D-tagatose on S. mutans biofilm formation was significantly more evident than that of xylitol. Growth in sucrose media supplemented with D-tagatose significantly decreased the expression of glucosyltransferase, exo--fructosidase and D-fructose-specific phosphotransferase genes but not the expression of fructosyltransferase compared with the culture containing sucrose only. The activity of cell-associated glucosyltransferase in S. mutans was inhibited by 4% D-tagatose. These results indicate that D-tagatose reduces water-insoluble glucan production from sucrose by inhibiting glucosyltransferase activities, which limits access to the free D-fructose released during this process and retards the growth of S. mutans. Therefore, foods and oral care products containing D-tagatose are anticipated to reduce the risk of caries by inhibiting S. mutans biofilm formation.

  • 出版日期2018-1