摘要

It is common practice to design a robot's kinematics from the desired properties that are locally specified by a manipulator Jacobian. In this work, the desired property is fault tolerance, defined as the post-failure Jacobian possessing the largest possible minimum singular value over all possible locked-joint failures. A mathematical analysis based on the Gram matrix that describes the number of possible planar robot designs for optimally fault-tolerant Jacobians is presented. It is shown that rearranging the columns of the Jacobian or multiplying one or more of the columns of the Jacobian by +/- 1 will not affect local fault tolerance; however, this will typically result in a very different manipulator. Two examples, one that is optimal to a single joint failure and the second that is optimal to two joint failures, are analyzed. This analysis shows that there is a large variability in the global kinematic properties of these designs, despite being generated from the same Jacobian. It is especially surprising that major differences in global behavior occurs for manipulators that are identical in the working area.

  • 出版日期2014-4