Hysteresis in the metachronal-tripod gait transition of insects: A modeling study

作者:Fujiki Soichiro*; Aoi Shinya; Funato Tetsuro; Tomita Nozomi; Senda Kei; Tsuchiya Kazuo
来源:Physical Review E, 2013, 88(1): 012717.
DOI:10.1103/PhysRevE.88.012717

摘要

Locomotion in biological systems involves various gaits, and hysteresis appears when the gaits change in accordance with the locomotion speed. That is, the gaits vary at different locomotion speeds depending on the direction of speed change. Although hysteresis is a typical characteristic of nonlinear dynamic systems, the underlying mechanism for the hysteresis in gait transitions remains largely unclear. In this study, we construct a neuromechanical model of an insect and investigate the dynamic characteristics of its gait and gait transition. The simulation results show that our insect model produces metachronal and tripod gaits depending on the locomotion speed through dynamic interactions among the body mechanical system, the nervous system, and the environment in a self-organized manner. They also show that it undergoes the metachronal-tripod gait transition with hysteresis by changing the locomotion speed. We examined the hysteresis mechanism in the metachronal-tripod gait transition of insects from a dynamic viewpoint.

  • 出版日期2013-7-15