摘要

Rocky intertidal organisms are commonly exposed to environmental gradients, promoting adaptations to these conditions. Emersion time varies along the intertidal range and in the supralittoral zone is frequently larger than a single tidal cycle, even lasting for weeks. The planktonic-dispersing gastropod Melarhaphe neritoides is a common species of the high shore, adapted to reduce water loss in order to survive during long-term emersion. In this study, we investigated the molecular response, at the proteome level, of M. neritoides collected in high-shore tide pools to a series of emersion periods, from 8 to 24 days, in laboratory conditions. We compared this response to individuals maintained submerged during this period, because this was their original habitat. We also included a reversion treatment in the study, in which emersed individuals were returned to the submerged conditions. Although we detected an increase in overall protein concentration with longer emersion periods, contrary to general expectation, the two dimensional electrophoresis (2DE)-based proteomic analysis did not show significant differences between the treatments at the level of individual protein spots, even after an emersion period of 24 days. Our results suggest that the metabolism remains unaltered independent of the treatment carried out or the changes are very subtle and therefore difficult to detect with our experimental design. We conclude that M. neritoides could be equally adapted to emersion and submersion without drastic physiological changes.

  • 出版日期2017-10