Migration mechanism of mesenchymal stem cells studied by QD/NSOM

作者:Ke, Changhong; Chen, Jianan; Guo, Yajun; Chen, Zheng W.; Cai, Jiye*
来源:Biochimica et Biophysica Acta-Biomembranes, 2015, 1848(3): 859-868.
DOI:10.1016/j.bbamem.2014.12.013

摘要

The migration of mesenchymal stem cells (MSCs) plays a key role in tumor-targeted delivery vehicles and tumor-related stroma formation. However, there so far has been no report on the distribution of cell surface molecules during the VEGF-induced migration of MSCs. Here, we have utilized near-field scanning optical microscopy (NSOM) combined with fluorescent quantum dot (QD)-based nano-technology to capture the functional relationship between CD44 and CD29 adhesion molecules on MSCs and the effect of their spatial rearrangements. Before VEGF-induced migration of MSCs, both CD44 and CD29 formed 200-220 nm nano-domains respectively, with little co-localization between the two types of domains. Surprisingly, the size of the CD44 nano-domain rapidly increased in size to 295 nm and apparently larger aggregates were formed following MSC treatment with VEGF for 10 min, while the area of co-localization increased to 0.327 mu m(2). Compared with CD44, CD29 was activated obviously later, for the fact that CD29 aggregation didn't appear until 30 min after VEGF treatment. Consistently, its co-localization area increased to 0.917 mu m(2). The CD44 and CD29 nano-domains further aggregated into larger nano-domains or even formed micro-domains on the membrane of activated MSCs. The aggregation and co-localization of these molecules promoted FAK formation and cytoskeleton rearrangement. All of the above changes induced by VEGF contributed to MSC migration. Taken together, our data of NSOM-based dual color fluorescent imaging demonstrated for the first time that CD44, together with CD29, involved in VEGF-induced migration of MSCs through the interaction between CD44 and its co-receptor of VEGFR-2.