摘要

On the afternoon of 28 June 2010, an enormous landslide occurred in the Gangwu region of Guanling County, Guizhou Province. In order to better understand the mechanism of the Guanling landslide, archived ALOS/PALSAR data was used to acquire the deformation prior to the landslide occurrence through stacking and time-series InSAR techniques. First, the deformation structure from InSAR was compared to the potential creep bodies identified using the optical remote sensing data. A strong consistency between the InSAR detected deformed regions and the creep bodies detected from optical remote sensing images was achieved. Around 10 creep bodies were suffering from deformation. In the source area, the maximum pre-slide mean deformation rate along the slope direction reached 160 mm/year, and the uncertainty of the deformation rates ranged from 15 to 34 mm/year. Then, the pre-slide deformation at the source area was analyzed in terms of the topography, geological structure, and historical rainfall records. Through observation and analysis, the deformation pattern of one creep body located within the source area can be segmented into three sections: a creeping section in the front, a locking section in the middle, and a cracking section in the rear. These sections constitute one of the common landslide modes seen in the south-west of China. This study concluded that a sudden shear failure in the locking segment of one creeping body located within the source area was caused by a strong rainstorm, which triggered the Guanling landslide.

  • 出版日期2017-10
  • 单位中国地质科学院地质力学研究所; 长安大学