摘要

In this paper, a novel daunorubicin (DNR)-loaded MUC1 aptamer-near infrared (NIR) CuInS2 quantum dot (DNR-MUC1-QDs) conjugates were developed, which can be used as a targeted cancer imaging and sensing system. After the NIR CuInS2 QDs conjugated with the MUC1 aptamer-(CGA)(7), DNR can intercalate into the double-stranded CG sequence of the MUC1-QDs. The incorporation of multiple CG sequences within the stem of the aptamers may further increase the loading efficiency of DNR on these conjugates. DNR-MUC1-QDs can be used to target prostate cancer cells. We evaluated the capacity of MUC1-CuInS2 QDs for delivering DNR to cancer cells in vitro, and its binding affinity to MUC1-positive and MUC1-negative cells. This novel aptamer functionalized QDs bio-nano-system can not only deliver DNR to the targeted prostate cancer cells, but also can sense DNR by the change of photoluminescence intensity of CuInS2 QDs, which concurrently images the cancer cells. The quenched fluorescence intensity of MUC1-QDs was proportional to the concentration of DNR in the concentration ranges of 33-88 nmol L-1. The detection limit (LOD) for DNR was 19 nmol L-1. We demonstrate the specificity and sensitivity of this DNR-MUC1-QDs probe as a cancer cell imaging, therapy and sensing system in vitro.