Multimachine Data-Based Prediction of High-Frequency Sensor Signal Noise for Resistive Wall Mode Control in ITER

作者:Liu Yueqiang*; Sabbagh S A; Chapman I T; Gerasimov S; Gribov Y; Hender T C; Igochine V; Maraschek M; Matsunaga G; Okabayashi M; Strait E J
来源:Fusion Science and Technology, 2016, 70(3): 387-405.
DOI:10.13182/FST15-207

摘要

The high-frequency noise measured by magnetic sensors, at levels above the typical frequency of resistive wall modes, is analyzed across a range of present tokamak devices including DIII-D, JET, MAST, ASDEX Upgrade, JT-60U, and NSTX. A high-pass filter enables identification of the noise component with Gaussian-like statistics that shares certain common characteristics in all devices considered. A conservative prediction is made for ITER plasma operation of the high-frequency noise component of the sensor signals, to be used for resistive wall mode feedback stabilization, based on the multimachine database. The predicted root-mean-square n = 1 (n is the toroidal mode number) noise level is 10(4) to 10(5) G/s for the voltage signal, and 0.1 to 1 G for the perturbed magnetic field signal. The lower cutoff frequency of the Gaussian pickup noise scales linearly with the sampling frequency, with a scaling coefficient of about 0.1. These basic noise characteristics should be useful for the modeling-based design of the feedback control system for the resistive wall mode in ITER.

  • 出版日期2016-11
  • 单位核工业西南物理研究院