摘要

Background: The common complication in cases of poisoning by Russell's viper (Daboia siamensis) venom (RVV) is acute renal failure, but the pathogenesis involved in the alteration of kidney function is still not well understood. Objective: To clarify the role of RVV in the pathogenesis of renal damage, the present study examines the functional short-term alterations acutely induced by RVV in isolated perfused rabbit kidney. Methods: Effects of RVV on renal tubular handling of sodium including mean perfusion pressure (PP), the renal vascular resistance (RVR), the glomerular filtration rate (GFR), the urinary flow (V) and osmolar clearance (Cosm) were studied in two groups of isolated perfused rabbit kidneys; each group had four isolated rabbit kidneys. RVV was added to the perfusion system to obtain the final concentration of 10 mu g/ml. Results: Immediate decreases in PP and RVR caused by the venom were significantly apparent (p < 0.05) in the first 15 min after RVV administration. A gradual rise in both PP and RVR occurred 15 min after the initial reduction of the first phase, but its remained below pretreatment values. The GFR, V. and Cosm decreased significantly throughout experiments after venom perfusion (p < 0.05). The total fractional sodium excretion increased significantly after venom perfusion throughout experiments, while significant reductions (p < 0.05) of renal tubular handling of sodium were apparent for proximal absolute reabsorption of sodium and proximal fractional reabsorption of sodium including marked reductions of distal absolute reabsorption of sodium and distal fractional reabsorption of sodium of the venom treated kidney. Optical microscopy of treated kidney tissue showed acute tubular necrosis at the end of experiment. Conclusion: The present study suggests that an administration of RVV in the isolated rabbit kidney causes direct acute nephrotoxicity and acute alterations of main functional parameters that are probably mediated by either the direct action of venom components or an indirect effect from vasoactive mediators released from renal cells of the RVV-treated kidney.

  • 出版日期2014-4