摘要

With the current and upcoming applications of beams carrying orbital angular momentum (OAM), there will be the need to generate beams and measure their OAM spectrum with high accuracy. The instrumental OAM spectrum distortion is connected to the effect of its optical aberrations on the OAM content of the beams that the instrument creates or measures. Until now, the effect of the well-known Zernike aberrations has been studied partially, assuming vortex beams with trivial radial phase components. However, the traditional Zernike polynomials are not best suitable when dealing with vortex beams, as their OAM spectrum is highly sensitive to some Zernike terms, and completely insensitive to others. We propose the use of a new basis, the OAM-Zernike basis, which consists of the radial aberrations as described by radial Zernike polynomials and of the azimuthal aberrations described in the OAM basis. The traditional tools for the characterization of aberrations of optical instruments can be used, and the results translated to the new basis. This permits the straightforward calculation of the effect of any optical system, such as an OAM detection stage, on the OAM spectrum of an incoming beam. This knowledge permits to correct, a posteriori, the effect of instrumental OAM spectrum distortion on the measured spectra. We also found that the knowledge of the radial aberrations is important, as they affect the efficiency of the detection, and in some cases its accuracy. In this new framework, we study the effect of aberrations in common OAM detection methods, and encourage the characterization of those systems using this approach.

  • 出版日期2010-9-27