摘要

Organic Rankine Cycles (ORCs) are an effective way to produce electricity from low-grade heat sources, which cannot be effectively obtained using conventional high-temperature Rankine cycles. Due to the lack of available information regarding the real Organic Rankine Cycle units on industrial level, off-design simulation under diversified operating conditions plays a significant role for both the system performance prediction and control strategy design. This paper summarizes the theoretical basis, modeling approaches and tools for ORC off-design simulations. Firstly, a review was conducted on the individual state-of-the-art convective heat transfer correlations and void fraction models. Secondly, different kinds of modeling approaches and simulation tools were proposed, highlighting their relevant characteristics, and were categorized for their specific applications. Moreover, an in-depth analysis of technical challenges related to various applications and focusing on the model accuracy and complexity, computational efficiency, as well as the model compatibility were extensively described and discussed. Finally, the current research trends in this field and the development for further investigations were presented.