摘要

Reactive oxygen species (ROS) are widely involved in intracellular signaling and human pathologies, but their precise roles have been difficult to enumerate and integrate holistically. The context- and dose-dependent intracellular effects of ROS can lead to contradictory experimental results and confounded interpretations. For example, lower levels of ROS promote cell signaling and proliferation, whereas abundant ROS cause overwhelming damage to biomolecules and cellular apoptosis or senescence. These complexities raise the question of whether the many facets of ROS biology can be joined under a common mechanistic framework using computational modeling. Here, we take inventory of some current models for ROS production or ROS regulation of signaling pathways. Several models captured non-intuitive observations or made predictions that were later verified by experiment. There remains a need for systems level analyses that jointly incorporate ROS production, handling, and modulation of multiple signal-transduction cascades.

  • 出版日期2016-11-29