摘要

Aqueous two-phase systems (ATPS) that are formed by mixing a polymer (usually polyethylene glycol. PEG) and a salt (e.g. phosphate, sulphate or citrate) or two polymers and water can be effectively used for the separation and purification of proteins. The partitioning between both phases is dependent on the surface properties of the proteins and on the properties of the two phase system. The mechanism of partitioning is complex and not very easy to predict but, as this review paper shows, some very clear trends can be established. Hydrophobicity is the main determinant in the partitioning of proteins and can be measured in many different ways. The two methods that are more attractive, depending on the ATPS used (PEG/salt, PEG/polymer), are those that consider the 3-D structure and the hydrophobicity of AA on the surface and the one based on precipitation with ammonium sulphate (parameter 1/m*). The effect of charge has a relatively small effect on the partitioning of proteins in PEG/salt systems but is more important in PEG/dextran systems. Protein concentration has an important effect on the partitioning of proteins in ATPS. This depends on the higher levels of solubility of the protein in each of the phases and hence the partitioning observed at low protein concentrations can be very different to that observed at high concentrations. In virtually all cases the partition coefficient is constant at low protein concentration (true partitioning) and changes to a different constant value at a high overall protein concentration. Furthermore, true partitioning behavior, which is independent of the protein concentration, only occurs at relatively low protein concentration. As the concentration of a protein exceeds relatively low values, precipitation at the interface and in suspension can be observed. This protein precipitate is in equilibrium with the protein solubilized in each of the phases. Regarding the effect of protein molecular weight, no clear trend of the effect on partitioning has been found, apart from PEG/dextran systems where proteins with higher molecular weights partitioned more readily to the bottom phase. Bioaffinity has been shown in many cases to have an important effect on the partitioning of proteins. The practical application of ATPS has been demonstrated in many cases including a number of industrial applications with excellent levels of purity and yield. This separation and purification has also been successfully used for the separation of virus and virus-like particles.

  • 出版日期2011-12-9