摘要

A delignification pretreatment is important for enhancing lignocellulose biodegradation. Alkali pretreatment is a promising approach. Fiber morphology, alkaline nitrobenzene oxidation, and ozonation were used to characterize the wheat straw modified by mild alkali pretreatment (2% sodium hydroxide (NaOH) at 121 degrees C for 30 min), and for studying the advantageous performance by Pycnoporus sanguineus NFZH-1 in the aspects of lignin and carbohydrate biodegradation. The results indicated a powerful and selective delignification in the mild alkali pretreatment process. The relative contents of the G unit and the T form both decreased with mild alkali pretreatment. Meanwhile, epicuticular wax removal and increased porosity was observed in the fibrous tissue of alkali-treated wheat straw. Thus, the biodegradation of the Klason lignin in alkali-treated wheat straw was clearly enhanced and reached 41.4% during the following 10 days of fermentation with P. sanguineus NFZH-1. In addition, the modification of fiber tissue with a mild alkali pretreatment enhanced the biodegradation of xylan. The biodegradation of the chemical constituents of the wheat straw was enhanced by the effective modification with a mild alkali pretreatment. The enhanced biodegradation will be helpful for improving the efficiency of straw return.

全文