摘要

We present an algorithm to study mixed-state dynamics in one-dimensional quantum lattice systems. The algorithm can be used, e.g., to construct thermal states or to simulate real time evolution given by a generic master equation. Its two main ingredients are (i) a superoperator renormalization scheme to efficiently describe the state of the system and (ii) the time evolving block decimation technique to efficiently update the state during a time evolution. The computational cost of a simulation increases significantly with the amount of correlations between subsystems, but it otherwise depends only linearly on the system size. We present simulations involving quantum spins and fermions in one spatial dimension.

  • 出版日期2004-11-12