Nonionic Dendritic and Carbohydrate Based Amphiphiles: Self-Assembly and Transport Behavior

作者:Prasad Suchita; Achazi Katharina; Schade Boris; Haag Rainer; Sharma Sunil K*
来源:Macromolecular Bioscience, 2018, 18(7): 1800019.
DOI:10.1002/mabi.201800019

摘要

Herein, a new series of non-ionic dendritic and carbohydrate based amphiphiles is synthesized employing biocompatible starting materials and studied for supramolecular aggregate formation in aqueous solution. The dendritic amphiphiles 12 and 13 possessing poly(glycerol) [G2.0] as hydrophilic unit and C-10 and C-18 hydrophobic alkyl chains, respectively, exhibit low critical aggregation concentration (CAC) in the order of 10(-5)m and hydrodynamic diameters in the 8-10 nm range and supplemented by cryogenic transmission electron microscopy. Ultraviolet-visible (UV-Vis) and fluorescence spectroscopy suggests the effective solubilization of hydrophobic guests by the self-assembled architectures, with the nanotransporters 12 and 13 possessing the highest encapsulation efficiency of 80.74 and 98.03% for curcumin. Efficient uptake of encapsulated curcumin in adenocarcinomic human alveolar basal epithelial (A549) cells is observed by confocal laser scanning microscopy. Amphiphiles 12 and 13 are non-cytotoxic at the concentrations studied, however, curcumin encapsulated samples efficiently reduce the viability of A549 cells in vitro. Experimental studies indicate the ability of amphiphile 13 to encapsulate 1-anilinonaphthalene-8-sulfonic acid (ANS) and curcumin with binding constant of 1.16 x 105(5)m(-1) and 1.43 x 10(6)m(-1), respectively. Overall, our findings demonstrate the potential of these dendritic amphiphiles for the development of prospective nanocarriers for the solubilization of hydrophobic drugs.

  • 出版日期2018-7

全文