摘要

Hundreds of Type 2 quasars have been identified in Sloan Digital Sky Survey (SDSS) data, and there is substantial evidence that they are generally galaxies with highly obscured central engines, in accord with unified models for active galactic nuclei (AGNs). A straightforward expectation of unified models is that highly obscured Type 2 AGNs should show little or no optical variability on timescales of days to years. As a test of this prediction, we have carried out a search for variability in Type 2 quasars in SDSS Stripe 82 using difference-imaging photometry. Starting with the Type 2 AGN catalogs of Zakamska et al. and Reyes et al., we find evidence of significant g-band variability in 17 out of 173 objects for which light curves could be measured from the Stripe 82 data. To determine the nature of this variability, we obtained new Keck spectropolarimetry observations for seven of these variable AGNs. The Keck data show that these objects have low continuum polarizations (p less than or similar to 1% in most cases) and all seven have broad H alpha and/or Mg II emission lines in their total (unpolarized) spectra, indicating that they should actually be classified as Type 1 AGNs. We conclude that the primary reason variability is found in the SDSS-selected Type 2 AGN samples is that these samples contain a small fraction of Type 1 AGNs as contaminants, and it is not necessary to invoke more exotic possible explanations such as a population of "naked" or unobscured Type 2 quasars. Aside from misclassified Type 1 objects, the Type 2 quasars do not generally show detectable optical variability over the duration of the Stripe 82 survey.

  • 出版日期2014-1