摘要

This paper presents three-dimensional numerical simulations and experimental studies of the hybrid rocket motor with multi-port fuel grain. The numerical model is established based on the Navier-Stokes equations with turbulence, chemical reactions, fuel pyrolysis, and solid gas boundary interactions. The simulation is performed based on the 98% hydrogen peroxide (HP) and hydroxyl terminated polybutadiene (HTPB) propellant combination. The results indicate that the flow field and fuel regression rate distributions present apparent three-dimensional characteristics. The fuel regression rates decrease first and then gradually increase with the axial location increasing. At a certain cross section, the fuel regression rates are lower in the points on arcs with smaller radius of curvature when the fuel port is a derivable convex figure. Two experiments are carried out on a full scale motor with the simulation one. The working process of the motor is steady and no evident oscillatory combustion is observed. The fuel port profiles before and after tests indicate that the fuel regression rate distributions at the cross section match well with the numerical simulation results.