Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells

作者:Kim, Myung Soo; Haney, Matthew J.; Zhao, Yuling; Mahajan, Vivek; Deygen, Irina; Klyachko, Natalia L.; Inskoe, Eli; Piroyan, Aleksandr; Sokolsky, Marina; Okolie, Onyi; Hingtgen, Shawn D.; Kabanov, Alexander V.; Batrakova, Elena V.*
来源:Nanomedicine: Nanotechnology, Biology and Medicine , 2016, 12(3): 655-664.
DOI:10.1016/j.nano.2015.10.012

摘要

Exosomes have recently come into focus as "natural nanoparticles" for use as drug delivery vehicles. Our objective was to assess the feasibility of an exosome-based drug delivery platform for a potent chemotherapeutic agent, paclitaxel (PTX), to treat MDR cancer. Herein, we developed different methods of loading exosomes released by macrophages with PTX (exoPTX), and characterized their size, stability, drug release, and in vitro antitumor efficacy. Reformation of the exosomal membrane upon sonication resulted in high loading efficiency and sustained drug release. Importantly, incorporation of PTX into exosomes increased cytotoxicity more than 50 times in drug resistant MDCKMDR1 (Pgp+) cells. Next, our studies demonstrated a nearly complete co-localization of airway-delivered exosomes with cancer cells in a model of murine Lewis lung carcinoma pulmonary metastases, and a potent anticancer effect in this mouse model. We conclude that exoPTX holds significant potential for the delivery of various chemotherapeutics to treat drug resistant cancers. Published by Elsevier Inc.

  • 出版日期2016-4