摘要

The present contribution reports a moving iron (Fe), zinc (Zn)-doped tin oxide/titanium (SnO2/Ti) anode-based system designed and operated for the electro-oxidation of methyl orange dye effluent. Electrochemical oxidation of the dye was carried out at a current density of 1.8 A/dm(2) for 120 min. Similar experiments were repeated with pure SnO2-based static and moving anode-based systems and the Fe, Zn-doped SnO2 static anode-based electro-oxidation system. Post oxidation, the surface of the electrodes was critically examined by scanning electron microscopy. Dye samples were analysed at regular intervals during the electro-oxidation process by chemical oxygen demand and colour removal measurements and characterized by UV-Vis spectroscopy and Fourier transform infrared spectroscopy at the end of the oxidation process. The obtained results elucidate the superiority of Fe, Zn-doped SnO2/Ti moving anode-based system for methyl orange dye effluent electro-oxidation. The moving anode prevents passive layer formation and decreases polarization resistance. Doping of Fe and Zn provides the anode-enhanced mechanical strength and electrocatalytic activity. The combined effects of axial anode movement and doping are responsible for improved performance of the moving anode system reported in this contribution.

  • 出版日期2014-9

全文