摘要

We propose a novel optical signal processing using an optically pumped vertical-cavity surface-emitting laser (VCSEL) with an external light input. The mode transition between a fundamental and a 1st-high-order transverse mode is induced by an external light injection. Since a single mode fiber (SMF) spatially selects a fundamental transverse mode as an output signal, we are able to realize a nonlinear transfer function, which will be useful in future photonic networks. The mode transition characteristic of a 1.55 mum optically pumped two-mode VCSEL has been simulated by using a two-mode rate equation, which includes the effects of spatial hole burning and spectral hole burning as gain saturation coefficients. We focus on the detuning effect in the injection locking. When the wavelength of an input light with a fundamental mode is slightly longer than that of a VCSEL operating in a 1st-high-order transverse mode, the transverse mode of the VCSEL is switched to a fundamental mode at a critical input power level. This gives us an ideal transfer function for 2R (reamplification and reshaping) regeneration. Also, the proposed scheme may enable polarization insensitive signal processing, which is a unique feature in surface emitting lasers.

  • 出版日期2004-3