摘要

With the development of communication technology, the functions of the mobile terminals are becoming ever more enhanced, and the energy requirements for the terminals become harder than before. In this paper we propose a novel Active Discontinuous Reception (DRX) mechanism with a sleep-delay strategy in the Long Term Evolution (LIE) technology in order to reduce the average latency while saving more energy in 4G networks. The key idea is to in the control of the downlink transmission on that way that the system would go to sleep only when there is no data frame arrival within the sleep-delay timer. Considering several logical channels for one connection, we model the network using the novel Active DEN mechanism with a sleep-delay strategy as a multiple synchronous vacation queueing system with a wake-up period and a sleep-delay. We derive several performance measures, such as the energy saving ratio, the system blocking ratio and the average latency. We also provide numerical results by means of analysis and simulation to show the validity of the novel Active DEN mechanism. Finally by constructing a profit function, we optimize several system parameters in terms of the number of the logical channels for one connection, the time lengths of the sleep-delay timer and the sleep period.