摘要

Building blocks having a high degree of backbone planarity, good solubilizing characteristics, and well-tailored physicochemical properties are highly desirable for constructing high-performance polymer semiconductors. Due to the detrimental steric hindrance created by alkyl chain substituents at the 3- and 3'-positions of bithiophene, "head-to-head" linkage containing 3,3'-dialkyl-2,2'-bithiophenes (BTR) are typically avoided in materials design. Replacing alkyl chains with less steric demanding alkynyl chains should greatly reduce steric hindrance by eliminating two H atoms at the sp-hybridized carbon center. Here we report the synthesis of a novel electron donor unit, 3,3'-dialkynyl-2,2'-bithiophene (BTRy), and its incorporation into conjugated polymer backbones. The alkynyl-functionalized head-to-head bithiophene linkage yields polymers with good solubility without sacrificing backbone planarity; the BTRy-based polymers show a high degree of conjugation with a narrow bandgap of similar to 1.6 eV. When incorporated into organic thin-film transistors, the polymers exhibit substantial hole mobility, up to 0.13 cm(2) V-1 s(-1) in top-gated transistors. The electron-withdrawing alkynyl substituents lower the frontier molecular orbitals, imbuing the difluorobenzothiadiazole and difluorobenzoxadiazole copolymers with remarkable ambipolarity: electron mobility > 0.05 cm(2) V-1 s(-1) and hole mobility similar to 0.01 cm(2) V-1 s(-1) in bottom-gated transistors. In bulk-heterojunction solar cells, the BTRy-based polymers show promising power conversion efficiencies approaching 8% with very large V-oc values of 0.91-1.04 V, due to the weak electron-withdrawing alkynyl substituents. In comparison to the tetrathiophene-based polymer analogues based on the unsubstituted pi-spacer design, the BTRy-based polymers have comparable light absorption but with 0.14 V larger open-circuit voltage, translating to enhanced optoelectronic properties for this attractive design strategy. Thus, alkynyl groups are versatile semiconductor substituents, offering good solubility, substantial backbone planarity, optimized optoelectronic properties, and film crystallinity, for materials innovation in organic electronics.