摘要

Triple-negative breast cancer (TNBC) refers to a heterogeneous group of tumors, for which there is currently a lack of targeted therapies. Poly(ADP-ribose) polymerase (PARP) inhibitors, phosphatidylinositol 3-kinase (PI3K) inhibitors and carboplatin (CBP) have demonstrated sufficient efficacy and safety for their use as individual drugs for the treatment of TNBC; however, their effects on TNBC when used as a combination have not been investigated. The primary objectives of the present study were to determine the effects of a combination of CBP, olaparib and NVP-BKM120 (BKM120), and to investigate the mechanism underlying their effects on TNBC cells. The drug combination was cytotoxic to TNBC cells, both with regards to short-term and long-term sensitivity, as determined using colony forming assays, and they exerted strong synergistic effects on MDA-MB-231 and CAL51 cell lines. All drugs affected cell cycle progression, and western blotting and immunofluorescence indicated that the the drug combination exerted its cytotoxicity via DNA damage, enhancing non-homologous end joining repair and inhibiting homologous recombination repair. These data provide a strong rationale to explore the therapeutic use of olaparib in combination with CBP and BKM120 in animal models, and later in clinical trials on patients with TNBC.